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Modeling of Particle Separations in Complex Flows 

P. DASKOPOULOS and A. M. LENHOFF* 
DEPARTMENT OF CHEMICAL ENGINEERING 
UNIVERSITY OF DELAWARE 
NEWARK, DELAWARE 19716 

Abstract 
Separations of micron-sized particles are generally dominated by body forces 

and hydrodynamic effects, which must be explicitly included in any mechanistic 
models of such separations. Accommodating complex flows is an especially chal- 
lenging component of such modeling, and this paper illustrates an effort to do so 
for the special case of a particle fractionation process performed in a rotating coiled 
tube. The separation is based on the combined effects of rotation and axial flow; 
the body force is thus centrifugal, while the complex hydrodynamics arise from the 
secondary flows that occur in addition to the axial convection in rotating curved 
tubes. The model is assembled in three stages. First, single-particle motion in a 
rotating tube is considered, and the effects of various parameters are elucidated. 
Next, these results are used in modeling the behavior of monodisperse sets of 
particles in order to account for a distribution of possible initial conditions. Finally, 
these results are used with a Gaussian quadrature scheme to simulate the behavior 
of a polydisperse particle population. A comparison with experimental results is 
presented for the steady-state and dynamic aspects of particle fractionation; agree- 
ment is good for the former, but discrepancies remain for the latter, possibly 
because of uncertainties in the particle size distributions. 

INTRODUCTION 
Particle separations are important in a large number of applications in 

such fields as biotechnology , mineral processing, and materials science. 
For particles on the order of microns in size, Brownian transport is too 
weak to be of practical use, and it is generally necessary to employ body 
forces in some way, e.g., centrifugation, electrostatic or magnetic sepa- 
rations, etc. Whatever the basis for the separation, most processes are 
implemented with the particles in a suspending fluid, leading to a need to 
account for hydrodynamic effects as well as the body force giving rise to 
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1014 DASKOPOULOS AND LENHOFF 

the separation. The hydrodynamics in many separations processes are rel- 
atively simple-in sedimentation field flow fractionation (SFFF) (I), for 
example, the flow is laminar and rectilinear-and these conditions often 
reduce the difficulty of obtaining a quantitative theoretical understanding 
and make these processes easier to design. It is, however, possible to 
increase the number of degrees of freedom in designing particle separations 
when more complex hydrodynamics are considered and even exploited. 
Such approaches may be desirable, especially for difficult separations, when 
staged or cyclic operation is usually needed. The disadvantage of this is, 
however, the complexity of the physical situation and thus of trying to 
develop quantitative models for design purposes. 

This paper deals with such a hydrodynamically complex process, namely 
the fractionation of particles by manipulating the axially imposed flow in 
a rotating helical coil (2). The interaction of centrifugal and hydrodynamic 
effects (including secondary flows) leads to fractionation based on differ- 
ences in particle size and density, with proof-of-principle experiments hav- 
ing been performed on a slurry of ferric oxide and zirconium oxide particles. 
The object of the work reported here is to develop a mechanistic model 
of the process that can be used to examine the effects of design and op- 
erating parameters on process performance. More important, however, is 
the broader motivation of examining the feasibility of modeling particle 
separations in which complex hydrodynamics are present. As the results 
presented below demonstrate, agreement between model predictions and 
experimental data is very good in some respects and less so in others, and 
possible reasons for these observations are discussed. 

The process of interest developed from an earlier periodic concentration 
technique in a spinning helical coil, originally suggested by Adler and 
coworkers (3-5), who also presented a relatively simple first-order model 
( 5 )  as well as a more detailed model of a related but simpler fractionation 
process (6). The basic idea of this approach was to couple a periodic local 
separation, alternating between depletion and enrichment of a component 
in a liquid-solid mixture, with an externally induced back-and-forth axial 
fluid motion, in order to achieve separation. This method thus combines 
the cyclic nature of parametric pumping (7,8) with the physical mechanisms 
employed in SFFF (MI). Adler et al. (4 )  have, however, noted two 
important differences from SFFF. First, secondary flows are used to en- 
hance the separation, and second, the cyclic method can be used for con- 
centrating and/or separating mixtures, while SEW always leads to dilution. 

The process variant examined in this paper accomplishes batch fraction- 
ation of fine particle dispersions according to size and/or density by cyclic 
repetition of a five-step sequence as sketched in Fig. 1 (2). The coil is 
connected to two well-stirred reservoirs through a spinning seal assembly, 
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MODELING OF PARTICLE SEPARATIONS IN COMPLEX FLOWS 1015 
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FIG. 1. Schematic diagram of cyclic batch separation sequence (after Ref. 2). 

with a bidirectional pump used to move fluid through the coil, which rotates 
continuously throughout the process. Initially the concentrations of par- 
ticles A and B are uniform throughout the entire system, and the objective 
is to fractionate the mixture based on A’s having a larger sedimentation 
velocity than B. During the first step there is no axial flow through the 
coil and the particles in the coil sediment under the influence of the external 
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1016 DASKOPOULOS AND LENHOFF 

field. The time of this step is chosen to be long enough that A sediments 
completely, but short enough that a substantial amount of B remains in 
suspension. In the second step, fluid is pumped from reservoir I through 
the coil toward reservoir I1 at a rate low enough that the secondary flows 
induced are not strong enough to resuspend particles of A. During this 
step only particles of species B are therefore moved toward reservoir 11. 
A complete sedimentation step (third step) follows, during which all the 
suspended particles (mainly B) drop out. The fourth step is displacement 
of fluid toward reservoir I sufficiently slowly not to disturb the sedimented 
particles in the coil. Finally, during the fifth step, a rapid displacement 
toward reservoir I induces strong secondary flows that resuspend the par- 
ticles of both species A and B, which are then carried toward reservoir I 
by the axial flow. Cyclic repetition of the steps leads to the net movement 
of A toward reservoir I and of B toward I1 and thus provides the basis for 
fractionation. 

The key to separation is particle movement in opposite directions during 
forward and backward pumping: whether a particle eventually ends up in 
reservoir I or I1 depends on the difference between the distances traveled 
during the opposite pumping steps. Hence there exists a cut-off radius, 
marked a, on the distribution in Fig. 2, below which particles display net 
migration toward reservoir I1 and above which they display net migration 
toward reservoir I. The value of a, depends on particle characteristics and 
operating conditions. The net migration toward either reservoir is amplified 
by the cyclic repetition of the steps, with most particles ending up in one 
reservoir or the other. However, a particle fraction with radii close to a, 
is characterized by similar extents of forward and backward axial migration 
during the cycle, and thus displays little net motion toward either end of 
the coil. This results in a fraction of particles in the radius range Aa, shown 
in Fig. 2, that will not be able to leave the coil in the preassigned number 
of cycles. 

Differences m behavior among particles in the distribution also become 
apparent in step 3, the complete sedimentation step. If this step is too 
short, a critical particle radius exists, ab in Fig. 2, below which the particles 
are still in suspension after the end of step 3, resulting in migration in the 
opposite direction during the slow backward pumping step. Since frac- 
tionation is based on transporting the small-particle sample toward res- 
ervoir 11, backward motion during this step is undesirable and can result 
in decreased efficiency. 

The overall behavior of the polydisperse system under consideration is 
determined by the position of a, relative to the region of the size distribution 
that contains the largest fraction of sample mass. The cut-off size a, can 
be manipulated by varying the process parameters, and one objective of 
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FIG. 2. Distribution of particle behavior as a function of size. 

developing a predictive model is to relate a, to the various parameters. 
However, this provides information only on the final steady-state after an 
infinite number of cycles. It is also important to be able to model the 
dynamic response of the system, i.e., the approach to the steady state as 
a function of time; this is more complicated and depends strongly on the 
actual particle size distribution. The work presented here addresses both 
aspects. 

Lennartz et al. (2) demonstrated the performance of the particle frac- 
tionation scheme by separating particles of ferric oxide and zirconium oxide 
in a radius range between approximately 1 and 15 pm. Key process design 
and operating parameters are presented in Tables 1-3, and they form the 
basis for our model calcuiations to be compared with Lennartz et al.3 
experimental data. 

A mechanistic model suitable for predictive exploration of a large region 
of the parameter space requires detailed modeling of several aspects: single- 
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1018 DASKOPOULOS AND LENHOFF 

TABLE 1 
Experimental Particle Systems (2) 

Ferric oxide, Zirconium oxide, 
Properties Fe103 Zr02 

Density, kg/m3 5.15 x 101 5.75 x 1P 
Initial concentration, kglm) 3 3.2 
Shape Nearly spherical Nearly spherical 
Particle radius, pm: 

50 wt% 1.5-2 1-7.5 
80 wt% 0.5-2.5 0.25-10 
95 wt% 0.25-5 0.15-12.5 
100 wt% < 10 c15 

TABLE 2 
System Structure (2) 

Initial reservoir volumes 
Connecting line volumes 
Coil volume 54 mL 
Seal assembly volume 9 mL 
Coil 54 turns PTFE tubing 

290 mL each 
6 mL each 

Tube radius 2.2 mm 
Coil radius 10.2 cm 

TABLE 3 
Experimental Procedure (2) 

~ ~~~ 

Coil rotation rate 
Cycle sequence: 

160 rpm, Ta = 1560 

Step 1 No axial flow 

Step 2 

Step 3 No axial flow 

Step 4 

Step 5 

Duration: 2.5 s 
Forward pumping, Re = 318, D = 578 
Duration: 18.18 s 

Duration: 90 s 
Slow backward pumping, Re = 318, D = 586 
Duration: 4.55 s 
Fast backward pumping, Re = 16192, D > 10,OOO 
Duration: 0.27 s 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



MODELING OF PARTICLE SEPARATIONS IN COMPLEX FLOWS 1019 

phase flow in a rotating helical coil, motion of a single particle in a flow 
and gravitational field, and treatment of polydisperse particle populations. 
We have studied the hydrodynamic problem in detail (22), including the 
existence of multiple solutions; in this paper only the primary steady-state 
solution is used. The remainder of the model features are described in the 
next section, and results and conclusions are presented separately. 

MODEL DESCRIPTION 

Single-Particle Motion 
Stokes' law provides the simplest description of particle motion through 

a fluid, but it applies only to the steady motion, at velocity Up, of a rigid 
spherical particle of radius up through an unbounded quiescent fluid of 
viscosity p. Many additional complications can be accounted for, as sum- 
marized most extensively by Happel and Brenner (13), but also elsewhere 
(24-16). Additional effects include fluid motion, particle shape, presence 
of walls, inertial effects, and interparticle interactions, and these may be 
accounted for to varying degrees of accuracy. Generalization of Stokes' 
law using the method of reflections yields the approximate result (13) 

for the hydrodynamic force on a rigid particle of arbitrary shape moving 
at velocity Up near a wall in a fluid that would be moving at velocity vm if 
undisturbed by the particle. c is a characteristic particle dimension, I is a 
characteristic distance of the system, and the subscript 0 implies evaluation 
at the location of the sphere center. CP, is a dimensionless, symmetric 
dyadic, the Stokes resistance tensor, applying to motion of the particle in 
an unbounded fluid. It is an intrinsic and invariant property of the particle, 
dependent solely on the shape of the particle and independent of the size, 
velocity, and orientation of the particle and of the properties of the fluid 
through which it moves. k is a wall-effect tensor, an intrinsic property of 
the shape of the bounding walls and of the location of the center of the 
particle relative to the boundaries, and is independent of such factors as 
the shape, size, orientation, and velocity of the particle, the properties of 
the fluid, and the size of boundaries. Happel and Brenner (23) provide a 
compilation of the calculated values of the components of the wall-effect 
tensor for various simple boundaries. Because of the nature of Q,, and k, 
Q, is also a dimensionless symmetric dyadic independent of the fluid prop- 
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1020 DASKOPOULOS AND LENHOFF 

erties and of the magnitude and direction of Up. However, it depends on 
the sizes and shapes of particle and wall, the location of the center of the 
particle relative to the wall, and its orientation. 

Equation (1) forms the basis of the model used here. In the absence of 
any detailed particle shape information for the materials used by Lennartz 
et al. (2), particles were assumed to be spherical, in which case CP, is a 
unit tensor. The treatment of wall effects is a first-order one, and requires 
modification for instance when the particle is very close to the wall: lu- 
brication theory is then more suitable than the method of reflections (e.g., 
Ref. 17). However, since typical particle sizes used experimentally were 
so much smaller than the tube cross-section, the overall wall effect on 
particle motion is small enough that Eq. (1) was used throughout. 

The situation of most interest is that where inertial forces are small 
compared to viscous forces, i.e., the Stokes regime. Omitting the terms 
describing inertial effects from the underlying eonations of motion leads 
to a linear system, at least for Newtonian fluids, and this significantly 
simplifies the mathematical analysis of the system. Because of the small 
particle sizes considered here and the resulting small particle Reynolds 
numbers, the assumption of negligible inertial forces is retained. The effects 
of inertia on particle motion have been examined mostly for rigid spherical 
particles and for simpie flows (13, and understanding is far from com- 
prehensive. What is clear, however, is that for spherical particles, incor- 
poration of inertial effects can result in a wider range of phenomena than 
for the Stokes limit, including lateral migration, orbital drift, and rotational 
effects in sedimentation. In the context of this work, the most important 
inertial effect is the additional lift force acting on the particle, which gives 
rise to lateral translational motion. This lift force has been calculated for 
both unbounded (18, 19) and bounded (20-22) domains, but only for 
idealized flow fields. A rough estimate of the lift force arising because of 
weak inertial effects can be obtained by using the analysis of Ho and Leal 
(20) for two-dimensional unidirectional flows; for conditions typical of the 
fractionation experiments, this force is -4 x the drag 
force for particles with a radius of 15 and 1 pm, respectively (23). Inertial 
effects can thus be neglected relative to viscous forces. 

Techniques for accounting for hydrodynamic interactions between par- 
ticles are summarized by Happel and Brenner (13). Describing such in- 
teractions requires accounting for particle shapes and sizes, their relative 
orientations, and the distance between them, their orientation individually 
relative to possible externally imposed fields, and the motion of the fluid 
in which they are immersed. In general, analytic solutions are not possible, 
and perturbation methods are usually used. Incorporating these into the 
kind of model of interest here was not feasible, and interparticle interac- 

and 1 x 
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MODELING OF PARTICLE SEPARATIONS IN COMPLEX FLOWS 1021 

tions were thus neglected; this is true not just for hydrodynamic but also 
for colloidal interactions. This neglect is a serious omission only when the 
local particle concentration is quite high, and this occurs in the particle 
fractionation scheme only near the wall when the particles are sedimented. 
This issue is discussed further later in the paper. 

The descriptions summarized above can be combined with body forces 
to obtain the hydrodynamic force on a particle immersed in the fluid flowing 
through a rotating coiled tube. For a tube of small curvature, a rotating 
toroidal coordinate system (r,cx',O) can be used (Fig. 3), and the force on 
the particle is then given, in tensorial form, by Eq. (l), corrected for the 
fictitious body forces introduced by the rotating coordinate system: 

FIG. 3. Rotating toroidal coordinate system. 
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1022 DASKOPOULOS AND LENHOFF 

Here p and pp are the fluid and the particle density, respectively, Q is the 
angular velocity, r is the particle position vector, [v,l0 is the undisturbed 
fluid velocity (in the absence of a particle), and the characteristic distance 
1 appearing in Eq. (1) is defined as the distance of the particle center from 
the wall. 

The Stokes resistance tensor (Dm is a unit tensor for the spherical shape 
assumed, while for the wall-effect tensor the motion of the particle can be 
decomposed into motions perpendicular to a rigid plane wall (r' direction) 
and parallel to it (a and 8 directions). The system is approximated by a 
plane wall tangent to the cylindrical surface, with curvature ignored. Falade 
and Brenner (24) showed that the planar approximation is the zeroth-order 
term in a regular perturbation scheme, valid when the characteristic dis- 
tance of the particle from the wall is much smaller than the wall curvature 
radius but still much larger than the size of the particle. The wall-effect 
tensor, k, can then be written as 

k = 0 9/16 
0 9/16 

(3) 

For a particle moving perpendicularly toward or away from the wall, wall 
effects are significant up to a distance of a few particle radii from the wall, 
(e.g., leading to an increase in the Stokes resistance of 230, 13,6, and 1% 
for distances of 1, 10, 20, and 100 particle radii, respectively), with an 
infinite drag on the particle predicted at a distance 0.125 particle radii. 
Thus the wall effects can be thought of as playing the role of a steep 
potential acting close to the wall, tending to prevent the particle from 
coming in contact with it. Due to the small particle sizes considered in this 
work, wall effects are significant in only a small part of the computational 
domain. Lubrication and curvature effects are ignored since they play a 
role only when the particle is very close to the walls and are negligible 
when the particle is more than a particle radius from the wall. 

Particle trajectories are calculated by using Eq. (2) in conjunction with 
Newton's second law. In a toroidal coordinate system rotating at angular 
velocity w, with the axial distance defined as S '  = Rtl (R is the coil radius), 
this results in a system of six first-order differential equations for the po- 
sition and velocity components of the particle: 

as ' ia t  = wp (4) 

ar'tat = up ( 5 )  
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aa 
at 

r'- = V 

1023 

(6) 

3 aw at ( 16a - r' ) - ' (Wp - W )  
4 
- naip, = -6npa, 1 - - 

8 
- 3 naz(p, - p)w( Up cos a - V, sin a) (7) 

- 1  4 au 
-naip,$ 3 = -6n 

1 6 a  - r' 
4 av 
- naip, = -6n  3 at 

8 4 - j nai(p, - p)w2R sin a - nai(p, - p)wW, sin a (9) 

Here w is the angular velocity of the coil. 
Dimensionless quantities are introduced by scaling planar velocities by 

a sedimentation velocity in the centrifugal field and axiaI velocities by the 
rotational velocity. A characteristic time is derived from the mobility of 
the particle, and lateral and axial lengths are scaled relative to the tube 
and coil radii, respectively: 

2 p  az 

9 F  
W, = wRw,, t = --T, r' = ar, s' = Rs (10) 

Here Ap = p, - p. The fluid velocities (U,V,W) are scaled as in the 
corresponding single-phase hydrodynamic problem (12): 

7 

u = autv,  v = aV/v, w = ?,/$ 
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1024 DASKOPOULOS AND LENHOFF 

with v = plp  the kinematic viscosity. Equations (4) to (9) can then be 
written in dimensionless form as 

ar 1 - -  - -~(a - 1)e4Ta2uP 
a7 162 

16(1 - r )  - 9e 

1 
81 - -(a - l)2e46Ta2(~p cos a - up sin a) (14) 

8(1 - r )  up + -- 8(1 - r) 
8(1 - r )  - 9~ 

+ cos a + 2wp cos 01 (15) 

av -( 16(1 - r )  
a7 

u - sin a - 2wp sin a (16) 
+--( 36 1 16(1 - r )  

u - 1 r2Ta2 16(1 - r) - 9e 

where the dimensionless parameters 

awR 
Ta = 2 a - ,  6 = d R ,  E = upla, u = pp/p (17) 

V 

have been introduced. The Taylor number, Ta, is one of the two key 
hydrodynamic parameters in a rotating curved tube, the other being the 
Dean number D = G a 3 f i / p v ,  where G is the imposed axial pressure 
gradient. Since D affects the velocity components (u,u,w),  it is a parameter 
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MODELING OF PARTICLE SEPARATIONS IN COMPLEX FLOWS 1025 

appearing indirectly in Eqs. (11) to (16). The curvature, 6, also affects the 
flow directly. E and u characterize the particle. The system of Eqs. (11) to 
(16) can be solved for any time T for given initial particle position and 
velocity components and subject to the values of the five dimensionless 
parameters. Since the velocity field for viscous flow in curved spinning 
coils is known (12), the trajectory of a particle can be calculated by time 
integration of the system equations. The solution to the hydrodynamic 
problem applies to steady, fully-developed flow, so long enough process 
times relative to the characteristic viscous time are required for the decay 
of transients to allow applicability of the hydrodynamic results to the frac- 
tionation scheme. In this case the system equations become ordinary dif- 
ferential equations with respect to the time variable, and a variable-order 
implicit multistep method with an analytical Jacobian is used for their 
solution. In the numerical implementation, commercially available ordi- 
nary differential equation solvers (IMSL) were utilized. 

Once an initial condition for a particle had been prescribed, integration 
in time was performed for the total time corresponding to the duration of 
the first step of the fractionation scheme (as shown in Table 3). The tran- 
sition from one step of the cycle to the next was accomplished by modifying 
the velocity field describing the hydrodynamic problem, followed by in- 
tegration in time to the end of the step. The final particle position during 
the previous step served as the initial condition for the subsequent one. 

These procedures were not applied to the last step of the cycle, i.e., the 
fast backward pumping, which plays the role of a resuspension step and 
where turbulent flow conditions were used experimentally. This step was 
accounted for in the model by assuming all particles to be resuspended 
instantaneously and subsequently transported axially at the average flow 
velocity. For the assumption of complete, instantaneous resuspension to 
be valid, the flow conditions must be strong enough to ensure resuspension, 
and the duration of the step must be much greater than the time required 
for the particle to pass from the viscous layer near the wall to the turbulent 
core. 

Both these requirements appear to be satisfied. First, the resuspension 
velocity for the particles can be calculated using any of a number of cor- 
relations; Zenz and Othmer’s (25), 

u2 = 8gapAp/(3p) 

gives the fluid velocity, u, capable of resuspending a particle of radius a,,, 
with the acceleration g calculated from the rotation of the system. These 
u values can be compared to those at the particle centers, estimated from 
the velocity field in the viscous sublayer found from the standard theory 
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1026 DASKOPOULOS AND LENHOFF 

of turbulence (26). For the flow conditions and the geometry of interest, 
the thickness of the viscous sublayer is about 60 pm and the velocity 
gradient is about 63,600 s-l. The result is a predicted safety margin of 
about 3 for 0.5 pm radius particles and about 10 for 10 pm ones, indicating 
that particles are indeed resuspended. 

The assumption of instantaneous resuspension was tested by estimating 
the time required for the resuspension from a force balance on the particle, 
the contributions being the lift force and the centrifugal force. As men- 
tioned previously, lift is due to inertial effects, and it appears to be un- 
important in the fractionation scheme when flow is laminar. However, in 
the turbulent resuspension step the high shear rate in the viscous layer 
enhances lift, hence its inclusion here. The lift force can be estimated in 
any of a number of ways (19, as extended by Ref. 27; 20, 22), and inte- 
gration of the force balance then provides the trajectory of the particle 
perpendicular to the wall and an estimate of the time required for the 
particle to move from the viscous sublayer to the turbulent core of the 
fluid. These calculations (23) indicate that times on the order of s are 
required, compared to the overall step duration of 0.27 s used in the 
experiments, so the assumption seems quite safe. 

A complete analysis of resuspension should account for phenomena such 
as particle-particle interactions and the existence of multiple layers of 
particles at the wall, in view of the high effective concentrations that result. 
That the sedimented particles are not isolated individual particles presents 
a complication, but one that is difficult to accommodate accurately. How- 
ever, since large particles are more easily resuspended (Eq. 18 and asso- 
ciated velocity estimate from shear rate), the turbulent flow is likely to be 
capable of resuspending a particle aggregate. The margin of safety in the 
assumption of instantaneous resuspension is large enough that it should 
not be affected by the presence of aggregates. 

Multlpartlcle Systems 
The modeling procedures described above are suitable for calculating 

the trajectories of single particles, and they must be modified to accom- 
modate the particle populations used experimentally. Two factors must be 
accounted for. First, in a monodisperse multiparticle system there is a 
distribution of initial conditions over which averaging must be performed 
in order to characterize the behavior of the population. Second, polydis- 
persity must be accounted for by averaging over the size distribution of 
the population. These issues are discussed separately below. 

The initial condition is a very important parameter affecting the calcu- 
lated axial migration of particles in the tube. Both the position and the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



MODELING OF PARTICLE SEPARATIONS IN COMPLEX FLOWS 1027 

velocity of each particle are unknown at the start of a given cycle. The 
initial velocity does not affect the final results appreciably, since the first 
step is long enough for the effects of this velocity to be damped out. In 
all the simulations the initial velocities of the particles have thus been taken 
to be zero, and the validity of this assumption has been confirmed by 
control calculations using different initial velocities. The randomness in 
initial positions must, however, be accounted for. This was done by per- 
forming simulations for samples of particles with the same characteristics 
(i.e., size and density) initially distributed uniformly over the tube cross- 
section. Averaging over the sample provided the average properties, in 
this case axial motion of the population during the different steps of the 
fractionation technique. Different sample sizes were used until the desired 
accuracy was obtained, with consecutive samples required to differ by no 
more than 5% in this study. Larger sample sizes were not warranted in 
view of the uncertainties in the experimental data (2) with which com- 
parison was made. 

In order to incorporate the effects of the particle size distribution, a 
continuous distribution was used to describe the experimental systems. 
Continuous distributions have been used previously for the characterization 
of polydisperse systems (see, e.g., references in Ref. 28), and similar tech- 
niques can be used for polydisperse particle systems, in this case to obtain 
a measure of the average extent of axial motion in the coil during a cycle 
of the separation scheme. 

In principle, quantitative modeling of the process requires evaluation of 
the motion of all the particles in a continuous distribution and subsequent 
averaging over the actual distribution function. For example, if 4 is the 
extent of axial migration of particles of radius u p ,  and g(a,) is the nor- 
malized density distribution function between a minimum (ami,,) and a 
maximum (amax), the average axial migration of the sample is given as 

In practice, the integral is evaluated by summation over a set of discrete 
points, a;, 

n 

T = c L(Ui)Wi 
i =  1 

where Wi are weights in the quadrature. Optimal quadrature efficiency is 
obtained by using Gaussian quadrature points, giving rise to different points 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1028 DASKOPOULOS AND LENHOFF 

and weighting functions, depending on the continuous distribution used 
(29). A similar approach has been used for phase equilibrium calculations 
for hydrocarbon mixtures (30). 

Three asymmetric distributions were used in this work to model the 
experimental systems, namely the beta, Pearson 111, and log-normal types 
(see, e.g., Ref. 31). Since the last two of these exist over an infinite range, 
while the experimental population has a finite upper size limit, they were 
renormalized over the range of interest. The experimental measurements 
of Table 1 were used to fit normalized continuous distributions character- 
izing the zirconium and ferric oxide samples. The two parameters for each 
theoretical distribution were usually obtained by requiring the 50 and 80 
wt% fractions of the population to be distributed as a function of particle 
size in the range suggested by the experimental data. Alternative ap- 
proaches can also be used, e.g., fitting total mass up to particle radii of 
7.5 and 10 pm, or a least-squares fit to the 50, 80, and 95% cutoff sizes; 
different parameters would then be obtained. Most of the results reported 
below were based by fitting the 50 and 80% fractions to a beta distribution 

where B is the beta function, but the sensitivity of the results to the dis- 
tribution used is discussed later. 

For each particle size included as a Gaussian quadrature point, the 100 
cycles of the process were simulated as follows. Initially the concentrations 
of A and B throughout the system were assumed to be uniform. The two 
reservoirs were considered as being well mixed at all times, while uniform 
migration, at the mean velocity (averaged over initial positions in the cross- 
section), was assumed in the coil. Inclusion of dispersion would be both 
difficult and unwarranted by the nature of the experimental data. During 
the first cycle, concentration discontinuities develop between the reservoirs 
and the adjacent ends of the coil, and the uniform migration assumed in 
the coil then results in propagation of the fronts through the coil, with new 
fronts created during every cycle. These fronts move through the coil at 
different rates, which depend on the particle size. The concentrations in 
the reservoirs change because of particle transport into and out of the coil 
during each cycle. The displacements of the concentration fronts in the 
coil were monitored during the various steps of the cycle for a sequence 
of 100 cycles. In order to account for sampling of the reservoirs in the 
experiments, their volume was readjusted every 25 cycles. Simulations were 
performed for multiple particle populations, each of uniform size. Quad- 
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rature over the particle size then provided concentrations (by weight) of 
the two different types of particles as a function of cycle number. 

Knowledge of the cut-off particle size (a, in Fig. 2) is adequate for 
characterizing the ultimate fractionation accomplished, but an accurate 
description of the tails is essential for predicting the dynamics of the 
fractionation. Since the quadrature scheme places few points in the tail, 
convergence was improved by incorporating the additional information 
provided by the cut-off size in the simulations. For this purpose the quad- 
rature procedure was modified by incorporation of additional points to 
take into account the cut-off size and the resulting splitting of the sample 
into two fractions exhibiting qualitatively different migration behavior, 
namely net migration in opposite directions. Similar action was taken to 
account for the fraction expected to remain in the coil for more than 100 
cycles ( Aa in Fig. 2). The additional points were placed in the middle of 
the respective size ranges. 

RESULTS AND DISCUSSION 

Single-Particle Motion 
The kinds of particle separations of interest here exploit differences in 

axial migration of individual particles arising from differences in particle 
characteristics. These differences in axial migration result from differences 
in trajectories in the tube cross-section, so both lateral and axial motion 
must be examined. The major process parameters apart from particle char- 
acteristics (size and density) are hydrodynamic (relative strength and/or 
direction of axial flow and rotation of the system), but the effects of dif- 
ferent initial conditions are also significant. Because of the importance of 
several parameters and the strong interactions among them, a compre- 
hensive exploration of the parameter space is not performed; instead, the 
particle fractionation scheme discussed earlier is used as the basis for the 
discussion, with qualitative arguments and estimates presented first and 
more detailed computational results shown subsequently. The emphasis is 
on the first two steps in the fractionation process, where differential be- 
havior is most clearly apparent. 

The first step in the fractionation scheme is an incomplete sedimentation 
step exploiting differences in settling rates arising from different particle 
characteristics. A Stokes sedimentation velocity, 

2ai Apw2R 
911. 
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can be used, with the centrifugal acceleration assumed constant throughout 
the tube because of the small curvature of the system. Knowledge of Us 
allows the duration of the sedimentation step to be chosen so as to ensure 
the sedimentation of heavier and/or larger particles while lighter and/or 
smaller ones remain in suspension. High rotational speeds accelerate the 
sedimentation process but also decrease the sensitivity of the method for 
separating two particles of different size and/or density, while low rotation 
rates improve resolution at the cost of larger cycle times; these consider- 
ations affect the choice of a suitable rotational velocity for the coil. 

The second step of the fractionation scheme is more complex in that it 
involves axial migration. Fluid is pumped through the coil, carrying with 
it the particles that have not sedimented in the previous centrifugation 
step. The effects of rotation now interact with those of axial flow and 
influence the trajectory of a particle in the cross-sectional plane of the 
tube. This trajectory is a function of the initial position of the particle, its 
physical characteristics, and the nature of the flows. Two limiting situations 
are possible. The first is when the secondary flows are strong enough to 
keep the particle in suspension, resulting in axial migration along a spiral 
path due to the axial flow. The second situation is when the particle sed- 
iments to the tube wall despite the secondary flows, resulting in very slow 
axial migration because of the low axial velocities near the wall. An ad- 
ditional concern beyond the fate encountered by a suspended particle is 
that particles that sedimented in the first step should not be resuspended. 

Which of the two limiting situations is seen for a given particle requires 
consideration of the relative strength of centrifugal forces and secondary 
flows, and thus depends on both particle and operating parameters. Equa- 
tion (22) provides a measure of the sedimentation velocity, while the sec- 
ondary flow velocities are obtained from hydrodynamic calculations. The 
ratio of the characteristic secondary flow velocity to the sedimentation 
velocity can then be written as 

U/US = 36u/{r2(a - 1)Ta2} 

where u is a dimensionless secondary flow velocity. The right-hand side of 
Eq. (23) is essentially the factor arising in the system Eqs. (15) and (16), 
premultiplying the hydrodynamic contribution in the particle force balance 
and therefore providing a measure of its relative importance compared to 
the centrifugal term, which is of order 1. For given flow conditions the 
value of u is known from the solution of the hydrodynamic problem (12). 
It depends on the particle position in the cross-section, but a global order- 
of-magnitude estimate is obtainable by dividing the maximum value of the 
stream function by the tube radius (= 1 in dimensionless quantities). 
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If the ratio of characteristic velocities in Eq. (23) is small, the secondary 
flows have little effect on the particle, which moves as in a constant cen- 
trifugal force field. If the ratio is large, on the other hand, the hydrody- 
namics dictate the motion of the particle, which remains in suspension. 
Hydrodynamic results (12) indicate that for rotation and axial flow in the 
same direction, the secondary flow is enhanced significantly as the relative 
strength of the rotational effects is increased, up to a limiting situation 
where rotational effects dominate. Simultaneously, the axial flow decel- 
erates with increasing rotation as a result of Coriolis forces. The actual 
strength of the axial flow is controlled largely by the value of the Dean 
number, D. Changes in hydrodynamic parameters can thus affect both 
axial and secondary flows, and represent additional degrees of freedom in 
design. 

These general arguments are confirmed by solutions of Eqs. (11) to (16) 
for specific situations. Results are presented in dimensional terms for a 
tube radius of 2 mm. First, the effects of particle size can be seen in Fig. 
4, which shows the projections of the trajectories of two particles of dif- 
ferent size under constant flow conditions. Both particles are assumed to 
be at the same position, ( r ,a)  = (0.1,1~/2), initially. Only the upper half 
of the cross-section is shown because of symmetry across the center line. 
For the particular flow conditions chosen to prepare the figure (D = 600, 
Ta = 10,000), the smaller particle (z = 0.00005) stays in suspension and 
migrates in the axial direction in a spiraling path, projected in Fig. 4 to a 

++++++++++++++++++ **4a.lb+I*+abki * i 1 I ++ 
FIG. 4. Effect of particle size on projections of trajectories in cross-sectional plane. Particle 
characteristics: u = 2; (+) c = O.ooOo5; (*) = 0.001. Flow characteristics: D = 600; Ta 

= 10,OOO. Initial conditions: (r ,a)  = (O.l,n/2). 
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1032 DASKOPOULOS AND LENHOFF 

closed path, while the larger one (E = 0.001) sediments. The qualitatively 
different behavior of the two particles has, as a consequence, a difference 
in extent of axial migration, as shown in Fig. 5, where axial migration, s', 
is plotted as a function of time. Because of the qualitatively different 
suspension behavior, differential axial migration occurs, and this can be 
amplified through cyclic repetition of the step. The wiggles apparent in the 
axial migration line of the smaller particle arise during the period the 
particle spends close to the periphery of the tube, where the axial velocity 
it experiences is relatively small. Similar effects to those of size arise from 
differences in particle density. 

The differences in behavior seen in Fig. 4 can be predicted by using Eq. 
(23), where UlU, takes on values of about 2 and 700 for the large and the 
small particle, respectively. These values are based on use of the maximum 
value of the stream function to estimate u, so they are necessarily ap- 
proximate. However, other situations for which detailed calculations have 
been performed confirm the utility of Eq. (23) in providing a criterion for 
predicting whether or not a particle will sediment. 

An example of the effects of hydrodynamic parameters is shown in Fig. 
6, where the effect of the strength of the axial flow is studied on the 

0.0 0.5 I .o 
t (soc) 

I .5 

FIG. 5. Effect of particle size on extent of axial migration. Partide characteristics: u = 2. 
Flow characteristics: D = 600; Ta = 10,OOO. Initial condition: (r ,a)  = (0.1,~/2).  
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f 

FIG. 6. Effect of hydrodynamics on projections of trajectories in cross-sectional plane. Particle 
characteristics: u = 5; c = 0.0005. Flow characteristics: Ta = IOOO; (+) D = 100; (*) D 

= 2100; (0) D = 5100. Initial condition: (r,a) = ( 0 . 8 , ~ / 4 ) .  

trajectory of a particle with E = 0.0005, u = 5 ,  and ( r ,a )  = (0.8,1~/4) as 
the initial position. The calculations used for preparing the figure allowed 
enough time for multiple circuits of the particles, and hence the symbols 
used do not correspond to the sequence of particle positions during one 
particular cycle. For all the cases shown, the secondary flow is strong 
enough to keep the particle in suspension, and the trajectories follow the 
secondary flow streamlines closely. The axial migration as a function of 
the axial flow strength is shown in Fig. 7. Although all the particles remain 
in suspension and are thus transported axially, the extent of migration 
depends on the strength of the primary flow, and Fig. 7 clearly shows the 
enhancement of axial migration with increasing flow rate. The wiggles seen 
in the figure for D = 5100 only are due to the fact that, because of the 
distortion of the streamlines, especially at large values of D, the particle 
moves close to the wall and hence into a region of small axial velocities. 
The important parameter in this case is the ratio of the Dean number to 
the Taylor number, which provides an estimate of the relative strength of 
axial pumping and rotation. 

A very wide range of hydrodynamic conditions is possible, especially 
when situations where the axial flow and rotation are in opposite directions 
are included. The resulting range of relative extents of particle motion is 
consequently also large. It is possible, for example, to use step 2 as a 
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100. 

0 

FIG. 7. Effect of hydrodynamics on extent of axial migration. Particle characteristics: u = 
5; c = 0.OOOS. Flow characteristics: Ta = 1ooO. Initial condition: (T,CL) = (0.8,~/4). 

preferential sedimentation step instead of a conventional sedimentation 
step, or for resuspension (step 5) to be performed under laminar flow (23). 

Since the trajectory of a particle depends on the nature of the flow at 
its position in the cross-section, the initial position of the particle is im- 
portant in determining its fate. For fixed hydrodynamic conditions, par- 
ticles that are close to the periphery of the tube or to the centerline 
experience relatively weak secondary flows and are more susceptible to 
sedimentation, while particles in the core of the flow experience stronger 
secondary flows and can remain in suspension more easily. In order to 
quantify the influence of different initial conditions on particle migration, 
simulations were performed for identical particles under fixed flow con- 
ditions but with different initial positions. Figure 8 is representative of such 
simulations in showing the behavior of particles of different sue starting 
at different initial positions in the cross-section. The conditions used in 
preparing the figure are similar to the experimental conditions (2): the 
hydrodynamic parameters are D = 600, Ta = 1500, and the particles have 
a relative density u = 5 ,  with the duration of the cycle being 20 s. The 
calculations support the earlier qualitative contentions. For the smallest 
particle size shown, E = 0.0025, all the particles but two in the vicinity of 
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C d 

FIG. 8. Particle behavior in cross-sectional plane as a function of initial position. + denotes 
that a particle sediments and * that it remains in suspension. Particle characteristics: u = 5; 
(a) Q = 0.0025; (b) E = 0.005; (c) e = 0.0075; (d) c = 0.01. Flow characteristics: D = 600; 

Ta = 1500. 

the inner and outer walls close to the centerline remain suspended. As the 
particle size is increased to E = 0.005 and 0.0075, the centrifugal forces 
become stronger and more particles sediment, while for E = 0.01 the 
secondary flows are inadequate and practically all particles sediment, with 
the exception of those starting close to the region of maximum strength of 
the secondary flow circulation. The tube cross-section can thus be divided 
into a region close to the walls, with particles starting there sedimenting, 
and a central core where particles remain in suspension. As particle size 
is increased, the central core shrinks, and there exists a cut-off value of 
particle size above which all particles sediment. The shape and size of the 
central core depend on the flow characteristics, while the duration of the 
step also affects the outcome. Again, similar conclusions can be drawn 
from varying particle density instead of particle size. 
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1036 DASKOPOULOS AND LENHOFF 

The effect of the behavior described above on axial migration is shown 
in Fig. 9 for particles of E = 0.005, with various initial conditions. All 
particles remain in suspension and hence migrate downstream because of 
the axial flow, but local differences result in differential migration: particles 
starting on streamlines close to the wall migrate more slowly because they 
travel for a significant amount of time near the wall, where axial velocities 
are small. 

Monodlsperse Multiparticle Systems 
Simulations were performed for systems of particles of different density 

and size. The values of dimensionless particle density were u = 5.15 and 
5.75 for the ferric oxide and zirconium oxide particles, respectively, while 
the range of sizes is discussed later. The hydrodynamic field and the du- 
ration of the various steps correspond to the values shown in Table 3. 

The results obtained for steps involving axial migration are summarized 
in Fig. 10, where the extent of axial migration, in centimeters, is plotted 
against the particle radius, in microns, for the forward (step 2) and the 
slow backward step (step 4). Based on the experimental particle size dis- 
tribution data, most of the zirconium oxide particles are sedimented at the 

200. 

r. 01 

- 0.82, 1.32 
- -  0.72. o.oa 
_ _  0.46, 2.03 
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2 100.- _. 
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FIG. 9. Effect of initial position on extent of axial migration. Particle characteristics: u = 5; 
c = 0.005. Flow characteristics: D = 600; Ta = 1500. 
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end of step 3, and hence they do not migrate backward during the sub- 
sequent slow backward pumping step. This is why only ferric oxide particle 
results are shown for this step. 

Because of the similar densities of the two types of particles, the axial 
migration distances are almost identical for particles of the same size for 
the two materials. Hence the experiments (2) accompiished classification 
based primarily on size. Figure 10 indicates that, during the forward pump- 
ing step, the secondary flows are strong enough to keep in suspension 
particles with radii up to approximately 6.7 and 7.2 pm for the zirconium 
oxide and ferric oxide samples, respectively. A smaller radius does not 
necessarily imply that all particles are suspended in the fluid because, as 
explained earlier, this also depends on the initial position of the particles. 
However, as the particle size is decreased, the fraction of particles re- 
maining in suspension increases. For the most important range of radii 
between 1 pm and the limit of sedimentation radius for each sample, the 
following relationships reliably describe the distance traveled (E, in cm) by 
a particle of radius ap (in pm) during the forward pumping step: 

I = 164 - 7.33ap - 2.16a; (24) 
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for the ferric oxide particles and 

C = 158 - 5 . 1 6 ~ ~  - 2.82ai (25) 

for the zirconium oxide ones. The distance traveled by the ferric oxide 
particles during the slow backward migration step can be described by the 
linear relationship 

P = 53.9 - 42.7aP (26) 

for particles with a radius in the range 0.2 to 1.25 bm. 
Step 3, which plays the role of a complete sedimentation step, is effective 

for particles with a radius of 1.25 pm or larger. For smaller particles this 
step is not long enough for complete sedimentation of the entire sample, 
and this results in migration toward reservoir I during the subsequent slow 
backward pumping step. This is particularly important for the ferric oxide 
sample, a significant weight fraction of which is in this size range; this 
material will migrate as indicated by Fig. 10 and Eq. (26). 

The experimental data (2) were reported in terms of the concentration 
ratios for the two particle types in the two reservoirs, plotted as a function 
of cycle number (N). The concentration ratio, CN/Co, is the concentration 
in the reservoir at the end of cycle N, divided by the initial concentration. 
The simulation results for the process are presented in the same format, 
with monodisperse ZrOz populations considered here and polydisperse 
populations in the next subsection. 

For the ZrOz, most of the particles sediment during step 2, so the main 
motion of the sample is during the fast backward step. Cyclic repetition 
of the steps results in depletion of reservoir I1 and a higher concentration 
of ZrOz in reservoir I. A typical run is shown in Fig. 11, where a particle 
radius of ap = 7.5 pm is used, a value corresponding to the first-order 
quadrature point. The concentrations in both reservoirs initially change 
rapidly, until a steady state is reached in which almost all zirconium oxide 
particles are in reservoir 1. The figure also shows the concentration ratio 
in the coil, calculated by averaging along the coil, i.e., across the various 
concentration regions separated by fronts, which arise as discussed earlier. 
The coil is also depleted of particles, and after about 50 cycles the con- 
centration in it falls to zero. 

Behavior is completely different for much smaller particles, for instance 
ap = 2.4 pm as shown in Fig. 12, again for particles with the density of 
ZrO,. The differences arise because the secondary flows during the forward 
pumping step are strong enough to keep the particles in suspension, leading 
to net motion toward reservoir 11. The concentration in reservoir I1 thus 
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0 .  

- Reservolr I 
- _  Reservoir I1 

Coil - 

50. 

N 
100. 

FIG. 11. Concentration ratio as a function of number of cycles. Results for Zr02 particles 
with up = 7.5 km. 

increases with the cyclic repetition of the steps, and reservoir I is depleted, 
while a significant portion of particles is still present in the coil after 100 
cycles. 

As indicated by the qualitative discussion presented earlier, there is a 
cut-off particle size a, between the two sizes considered in Figs. 11 and 12 
for which the extents of axial migration during the forward and the back- 
ward pumping steps are equal, so that the particles of that size will never 
leave the coil. This particle size and other characteristics of the particle 
size distribution determine much of the behavior of the population during 
the process, and this can be modeled only by taking into account the full 
distribution; this is done next. 

Polydisperse Multlparticle Systems 
The particle size distribution data (Table 1) were fitted to the continuous 

distributions for the zirconium oxide and ferric oxide samples. A compar- 
ison is shown for zirconium oxide in Fig. 13, with the experimental data 
represented as having a constant value in each of the size ranges given. 
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Reservoir I 
Reservoir II 

0 .  I t I 1 
0 50. 

N 
100. 

FIG. 12. Concentration ratio as a function of number of cycles. Results for Zr02 particles 
with up = 2.4 pm. 

The beta distribution appears to be closest to the experimental data, and 
was thus preferred. Both the log-normal and Pearson I11 distributions 
satisfy the imposed constraints, but are significantly skewed to smaller 
particles. Somewhat different fits for these two distributions can be ob- 
tained by using different specifications (other than fitting the 50 and 80% 
fractions). 

The ferric oxide sample has a much narrower size distribution and a 
significantly lower average radius than the zirconium oxide sample. These 
features make it impossible to find a distribution exactly satisfying the 50 
and 80% experimental measurements, but the distributions shown in Fig. 
14 are representative of a class depicting the experimental data reasonably. 
A more extensive evaluation of the sensitivity to the distribution param- 
eters (23) indicates that, at least for beta distributions that represent the 
data reasonably, the quadrature points and the weights are within about 
3% of each other despite the relatively wide variation of parameters, sug- 
gesting that any of these parameter sets may reasonably be used. There 
is, however, a more serious problem in describing the two tails of the 
sample. There is a 5 wt% fraction comprising particles with a radius less 
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0.0 0.5 

a./am. 

FIG. 13. Particle size distribution for the zirconium oxide sample. 

than 0.25 or larger than 5 km. Since this is a small fraction of the total 
mass of the system, it would not be expected to play a major role in the 
subsequent simulations. However, qualitatively different behavior in either 
or both tails can dramatically change the observed overall behavior of the 
sample. For example, for the Fe20, particles, the experimentally observed 
trend is preferential migration toward reservoir 11, but settling of larger 
particles in the incomplete sedimentation step (step 1) results in net mi- 
gration of the small particle fraction toward reservoir I, i.e., in the opposite 
direction. 

The beta distribution used to model the zirconium oxide sample results 
in a cut-off size a, of 3.75 km, from which is obtained that 10.3 wt% of 
ZrOz particles show a net migration toward reservoir 11, 4.2 wt% migrate 
so slowly that they remain in the coil after 100 cycles, and the rest (85.5 
wt%) migrate toward reservoir I. These long-time results are a function 
of the distribution only. However, the dynamic behavior leading to this 
situation requires quadrature over the distribution, as outlined earlier. 
Calculations for the full distribution were performed for different quad- 
rature orders M until convergence was achieved, as summarized in Fig. 
15. The lines showing a concentration ratio larger than 1 (enhancement) 
correspond to reservoir I, and those with values less than 1 (depletion) to 
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20. , 

0.0 0 5  

a,/a,. 

FIG. 14. Particle size distribution for the ferric oxide sample. 

reservoir 11. The significant differences seen in the model predictions using 
different orders of quadrature result from the relatively wide size distri- 
bution and the qualitatively different behavior in different regions, namely 
net migration in opposite directions. Since the small-particle tail represents 
a relatively small fraction of the population, quadrature points are not 
placed in the tail for small M. It is for this reason that the modified quad- 
rature scheme, discussed earlier, was used to ensure inclusion of repre- 
sentative points in the tail region. 

The calculations with the modified quadrature are shown in Fig. 16, with 
a quadrature order M here implying the use of M + 2 terms: M as before 
and 2 additional ones accounting for the correct weight fraction ratio of 
the different population regions. The relative error between the two most 
refined calculations at the end of the last cycle (N = 100) is around 1.7%. 
The most refined calculations indicate that steady state is approached after 
roughly 50 cycles, with 86% of the zirconium oxide in reservoir I. The 
dynamic behavior is more sensitive than the steady state to the selection 
of the quadrature points, and the sensitivity of the steady state is essentially 
eliminated by the modified quadrature scheme. 

Because of the relatively narrow size distribution of the ferric oxide 
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FIG. 15. Concentration ratio as a function of number of cycles. Convergence behavior for 
ZrO, for different quadrature orders. 

sample, its steady-state behavior is more clear-cut than that of the zircon- 
ium oxide. For instance, using a beta distribution with parameters a = 
21.191 and b = 92.136,98.98 wt% of the population is transported toward 
reservoir 11, with no accumulation inside the spinning coil. In this case a 
low-order quadrature is adequate for convergent results, as shown in Fig. 
17. The enhancement line here corresponds to the concentration in res- 
ervoir I1 and the depletion one to that in I. Comparison of this figure with 
the corresponding one for zirconium oxide (Fig. 16) verifies that fraction- 
ation is accomplished. 

Because, as mentioned earlier, a distribution identically satisfying the 
experimental measurements of weight fraction over the specific particle 
size range could not be found for the ferric oxide sample, several distri- 
butions satisfying the 50 and 80% weight fraction conditions as closely as 
possible were tried, with very similar results to those shown in Fig. 17. In 
addition, in view of the effects of tails on overall behavior, an alternative 
distribution, now satisfying the 80 and 95% weight fraction conditions, was 
also tried; this distribution should be compared to that used in Fig. 14, 
which places 99.98% of the mass in the radius range from 0.25 to 5 pm, 
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2. 1 

I I 
0 .  50. 100. 

1 1 

N 

FIG. 16. Concentration ratio as a function of number of cycles. Convergence behavior for 
ZrO, for different quadrature orders using modified quadrature procedure. 

compared to the experimentally reported value of 95%. The additional 
distribution, a beta distribution with parameters a = 2.872 and b = 26.128, 
is skewed toward lower particle sizes compared to the original one, but it, 
too, predicts that more than 99.9% of the sample migrates toward reservoir 
11. However, a major difference is that the new distribution suggests that 
58% of the sample comprises particles small enough for sedimentation to 
be incomplete during step 3, while the corresponding number for the orig- 
inal one was 0.3%, and this affects the dynamic behavior. Figure 18 shows 
that accounting for the smaller particle sizes reduces the calculated effi- 
ciency of the separation, as characterized by the dynamics of attaining the 
long-time fractionation situation. These results emphasize the importance 
of a detailed knowledge of the particle size distribution. 

The theoretical predictions for a system consisting of a mixture of ferric 
and zirconium oxide particles are shown in Fig. 19, together with the 
experimental data (2). The predictions shown for the ferric oxide sample 
are those using the distribution function that accounts for the tail at small 
particle sizes. The model reproduces the qualitative experimental trends: 
the zirconium oxide particles are transported toward reservoir I, and the 
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0 .  50. 100. 

N 

FIG. 17. Concentration ratio as a function of number of cycles. Convergence behavior for 
Fe203 for different quadrature orders. 

ferric oxide toward 11, with transport of ZrOz faster than that of Fe,O,. 
Zirconium oxide particle transport is essentially complete after 50 cycles, 
while ferric oxide transport is incomplete after even 100 cycles. Additional 
calculations for ferric oxide predict an approach to steady state at around 
200 cycles. 

Since a steady state was reached experimentally only for the zirconium 
oxide particles, it is only for this sample that an evaluation of the theory 
is possible for the prediction of the cut-off size a,. Agreement is good for 
the depletion prediction (reservoir 11), but efficiency is somewhat over- 
predicted for the final concentration in reservoir I. The agreement is en- 
couraging in view of the inclusion of no adjustable parameters at all in the 
calculations. 

The discrepancies in predictions of both steady-state and dynamic be- 
havior may result at least in part from the presence of dead volume in the 
experimental apparatus, in the form of connecting lines and the rotating 
seal assembly. Together these account for an additional volume equal to 
39% of the coil volume. The presence of the connecting lines is expected 
to affect the separation adversely, as was verified experimentally (32). To 
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a. b 

2.872, 26.128 
2. 

_ _ _ - - - .  - - -  21.191. 92.136 - -  - c 

3 
t 1 . -  

- - -  - - _  - -  - -  - -  

0. I I I 
0 50. 

N 
100. ' 

FIG. 18. Concentration ratio as a function of number of cycles. Effect of distribution param- 
eters for Fe,O,. 

account for the dead volume, the model was modified by the addition of 
a compartment at each end of the coil, with plug flow assumed in each. 
The volume of each additional compartment was taken as 10.5 mL, cor- 
responding to the measured 6 mL of connecting line at each end of the 
coil and 9 mL overall volume of the spinning seal assembly. Thus the 
modification of the model did not introduce any adjustable parameters. 

The incorporation of dead volumes in the model was found to increase 
the mass of particles predicted to accumulate in the coil. Accumulation of 
particles in the coil is not a consequence only of the existence of dead 
volumes and it cannot be avoided completely, but the presence of dead 
volumes can significantly increase the extent of accumulation in the coil . 

and consequently drastically reduce the efficiency of the separation. This 
occurs because the dead volumes increase the effective coil length, with 
the effective migration velocity unaffected. This slows the fractionation 
dynamics, but in addition the size-neutral plug flow migration in the dead 
volume increases the size range ha around a, (Fig. 2) for which particles 
will never leave the coil. Hence both reservoirs are depleted in their steady- 
state concentrations, in addition to the effect on dynamic behavior. 
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- ZR02 In I 
- -  ZR02 In II 
- -  FE203 In I 

FE203 In II 

0.  I I 
0 50. 

N 
LOO. 

FIG. 19. Comparison of theoretical predictions with experimental data. (0) ZrOl; (0) Fe20,. 
Open symbols: reservoir I; filled symbols: reservoir 11. Vertical bars: estimated experimental 

uncertainty (2). 

The simulation of the experimental results was modified to include the 
connecting tubing, with results of the most accurate calculations performed 
shown in Fig. 20, together with the experimental results for comparison. 
The addition of dead volumes in the system does not alter the physical 
behavior, and all the qualitative trends of Fig. 19 are reproduced here. 
However, the tubing causes a lag for the first few cycles before the con- 
centration of the reservoir that will eventually be enriched starts to increase 
for both samples. This lag period depends on the actual volume of the 
connecting lines and is increased as the dead volumes increase relative to 
the volume of the pumping stroke. 

The extent to which a particle sample is affected by dead volumes de- 
pends on the relative positions of the mean of the distribution and the cut- 
off size around which the region consisting of particles accumulating in the 
coil is centered. Because of this, the zirconium oxide sample is affected 
more than the ferric oxide sample, and the agreement of the simulations 
with long-time behavior seen experimentally is improved. The amount of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1048 DASKOPOULOS AND LENHOFF 

- ZRO2 in I 
- -  Z R 0 2  in II 
_ -  FEZ03 in I 

FEZ03 in I1 + __-_---- 
I _---- 

u' z I .  

t 

---I - - _  I - - -  

- _  

0. I I I 
0 .  50. 100. 

N 

FIG. 20. Comparison of theoretical predictions with experimental data, with inclusion of 10.5 
mL of dead volume at each end of coil. Notation as for Fig. 19. 

each component transferred to the desired reservoir after 100 cycles was 
found to be around 85 and 81% for the zirconium and ferric oxide particles, 
respectively, compared with the experimentally reported value of nearly 
80%. 

The approach to steady state predicted for the zirconium oxide popu- 
lation (cf. Figs. 19 and 20) is delayed because of the reduction of the 
separation efficiency of each individual cycle. However, the results for the 
ferric oxide sample appear to deviate most from the experimental data. In 
the experiments, a pronounced lag in the change of ferric oxide concen- 
trations in both reservoirs is observed, an effect that is not observed in the 
simulations. This discrepancy may be related to the uncertainties associated 
with the use of the continuous distribution in the simulations. In particular, 
as noted earlier, the existence of tails in the distribution showing different 
features from its central portion can considerably change the overall ob- 
served behavior of the sample. For the distribution used to describe the 
ferric oxide sample, the simulations find that 57% of the particle mass 
undergoes backwash during the slow backward pumping step, and hence 
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a significant portion of the sample is moved away from the concentrated 
reservoir during one step of the cycle. The overall behavior of the ferric 
oxide sample is affected strongly by this portion, and using a different 
distribution can result in significantly different predictions, although the 
general trends and qualitative behavior are not altered. This observation 
emphasizes the need for an accurate representation of the particle size 
distribution, which unfortunately is not possible based on the available 
experimental data. 

CONCLUSIONS 
The theoretical predictions obtained for the experimental conditions of 

Lennartz et al. (2) capture all the qualitative trends reported in the ex- 
periments. In addition, the quantitative agreement between theory and 
experiment is reasonable. The most important factor missing for reliable 
modeling appears to be the detailed and accurate knowledge of the particle 
size distributions. The distributions used appear successful in predicting 
quite accurately the enrichment-to-dilution ratios measured expenmen- 
tally, a consequence of the fraction of the mass of the sample below the 
cut-off size, but the reliable prediction of the dynamic behavior is more 
delicate and requires more detailed information about the full particle size 
distribution. 

Various assumptions incorporated in the model are also expected to 
affect the predictions. Classification can be affected by the flow transients, 
particle-particle interactions, inertial effects, and axial dispersion effects 
that have been neglected. However, the effects included in the formulation 
presented here account for the most important features of observed be- 
havior, and order-of-magnitude estimates of the relative contributions of 
these effects allow the consequences of parameter changes to be considered 
approximately without the detailed computations presented here; such cal- 
culations are shown by Daskopoulos (23). 
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